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EXCITATION OF ATOMS BY ELECTRON BOMBARIDMENT 2%

G.F.Drukarev and V.I.Ochkur”

Brief survey of recent literature on the excitation
probability of atoms by electron bombardment. Approxi-
mate formulas for the effective cross sections of atom
excitation by electron bombardment are derived on the
basis of simple considerations. The formulas are shown
to yleld cross section estimates of an accuracy of a
factor of 1.5 to 3.

In the present report we will examine the approximation of a formula for
effective cross sections of atomic excitation by electron bombardment, derived
on the basis of simple considerations and permitting a ready estimate of the
cross section to within a factor of 1.5 - 3.

I. Let us begin with Born's wellrknown formula which corresponds to a re-
presentation of the wave function of the "atom + electron" system as the simple
product of a plane wave and the function describing the atom, and has the form:

N RO R ®
& K=Ky =1 q

Here, a and b are sets of quantum numbers denoting the initial and final states
of the atom and q = K4 - Ky is the transferred momentum. We will use atomic
units. Figure 1 shows several examples, encompassing a rather broad range of
change in absolute magnitudes of cross sections from 0.03 ﬂao for He to 50 ﬂao
for Na.

We see from the graphs that in the high-energy collision region, i.e.,
where the Born formula can be considered well-substantiated, calculation and ex-
periment give quite close results.

If, despite this fact, a noticeable divergence occurs it apparently must be
explained by the insufficiently accurate measurement of the absolute values of
cross sections in the experiment or, perhaps, by the use of insufficiently accu-
rate atomic functions in the calculations. If in such cases the theoretical and
experimental curves coincide at high energies, then on the whole the agreement
becomes quite homogeneous. In the region of the cross-section maximum, the Born
approximation proves to be overestimated by a factor of 1.5 to 3. Thus, this
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approximation can be used whenever such an error is acceptable; however, for /3
many problems more accurate results are desirable.

Furthermore, the Born formula does not permit calculating the transition
probabilities accompanied by a variation in atomic spin. Such transitions, just
as 1s the case for exchange corrections for transitions without a variation in
spin, can be calculated only with consideration of the inherent symmetry proper-
ties of the wave function. The Born-Oppenheimer formula used for this purpose,
as was indicated by one of us earlier (Ref.l), is not correct, which explains
the poor quality of results obtained by means of it. In the same paper, we
stated that the correct expression for the amplitude of exchange scattering, gauv,
has the form

gy = - -k G| D e (2)
B e

In Fig.2 we present several curves illustrating the quality of calculations
which can be performed by means of this formula. As indicated in the graph, it
has approximately the same degree of accuracy as calculations for nonexchange
transitions.

Therefore, at present almost all rules for improving the "Bornian" results
actually or simply follow the line of satisfying two requirements:

a) An "improved theory" should lead to cross sections that agree with the
known inequalities ensuring conservation of the number of particles in scattering

5 & (2L + 1) (3)

where th) is the I~th partial cross section.

b) The obtained cross sections should be below the "Bornian". For lack of
space, we will not dwell on the various means of cutting off total and partial
cross sections as they had been proposed for achieving these purposes, especial-
ly since such methods as the use of the R matrix (Ref.2, 3) or the method of the
collision parameter (Ref.L, 5), in our opinion, rather have the character of a
general rule and, in essence, do not extend beyond the frame of the Born approxi-
mation.

Therefore, we will discuss more fully only the paper by L.Vaynshteyn,
L.Presnyakov, and I.Sobel'man (Ref.6) in which an attempt is made to use an
initial approximation for the wave function that is more accurate than that used
in the Born method. The basic idea here is that, with respect to the problem of
atomic excitation, a major role is played by the interaction of free and yin
atomic electrons which should be taken into account as completely as possible.
Examining the problem of the hydrogen atom, the authors assume

¥(r, r2) = e*"1 @(r1, rz) (4)



where the function @(r;, rz) is selected such that it accurately describes the
electron-electron scattering and the motion of their common center of mass in
the field of the nucleus. Although the specific form of the function o(ry, rs)
is rather complex, a substitution of eq.(4) into the integral identity for the
scattering amplitude makes it possible to continue all necessary calculations
which lead to the following formula:

KE+Kb
8 i d
oap = — [ [ vl |a) [PLe(y, 0)P S (5)
Ka Ka=Ky q
where
Vv . .
f(\), X) = Sinh v F(—l\), iv, l, X)

2
x:[—%—r; \)=K;1; Ae =K2&_K§
Ae + 3

while F(a, b, ¢, x) is a hypergeometric function.

Thus, eq.(5) differs from Born's formula (1) only by the factor f(v, x)
which tends to unity for large collision energies. A generalization of these
formulas for the case of a complex atom is given elsewhere (Ref.7). Figure 3
shows the results of the calculations performed for transitions 18-2s and 1s8-2p
in hydrogen and 58-5p and 5S-6P in rubidium. We see from the diagram that, when-
ever a comparison with the experiment is possible, the results are quite satis-
factory.

IT. As stated before, the results of the first approximation may be too
rough, especially when the plasma temperature is not very high and when it is
not the maximal value of the excitation probability that is of interest but its
values near the threshold. Often, they are even more unsatisfactory, namely,
when it is necessary to obtain the transition probabilities between states of
similar energy, mainly between excited states. In these problems, the results
of calculations performed in first approximation often contradict the principle
of conservation of the number of particles.

Unfortunately, progress in the development of more accurate methods of
calculation is hampered by the fact that the various hypotheses made for this
purpose cannot be anywhere near completely substantiated, or even estimated,
within the frame of the theory itself. Experimental data on the absolute values
of cross sections usually are of insufficient accuracy and, in the case of /5
transitions between excited states, are virtually nonexistent.

ITI. Although the above-~mentioned methods of calculating cross sections
are rather simple, their use requires knowledge of the atomic functions and of
computer work, which latter is readily done on electronic computers; without
computers, however, the problem is not too simple. Therefore, simplified formu-
las proposed for a rapid estimation of the probabilities of allowed transitions
may be of interest, especially since the results obtained by their aid in the /6
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low-energy region need not be inferior in accuracy to the results of more com—
plex calculations.

Expanding, in the Born formula exp(iqgr), in a power series and limiting
ourselves to a dipole approximation we arrive at the Bethe formula

Z'Tfab . AE
(AEab )2 E

Cap =

1n(3E) (6)

which indicates that the cross section is mainly determined by the factor

AL VRN
-zzar—jg-, where f., is the force of the oscillator and AE., is the excitation
abd

energy.
Concrete calculations performed in the Born approximati ion show that, fo
a large number of transitions, the cross sections expressed thresh ld units
_ [ E = AE.qy \¥ - :
X\ behave in like manner. They reach a maximum when x = 1 - 2,
ab

and the maximal value of the cross section itself, in fact, is quite satis—-
factorily transferred by the indicated factor. This permits proposing the fol-
lowing semiempirical formula for describing the excitation function:

Oap = __EEE&EE_ P(x) (7)
(AEay)
kaz
where P(x) can be selected, for example, in the form of C; —Zi———jgng— In(Cox)
+ X )

where Ci and Gz are constants of the order of unity. Details on the selection
of P(x) and the result of averaging the values of Vo according to the Maxwellian
distribution can be found elsewhere (Ref.8).

A similar approach was proposed by M.Seaton (Ref.2). Seaton, considering
that the functions P(x) change little from atom to atom, proposed to construct
these functions from experimental data for such different atoms as He, H, and
Na and, being convinced that the derived curves are actually quite close, sug-
gested their use in calculations for other atoms. According to the author's
assertion, the error of the results obtained in this manner will not exceed 100%.

These methods, although quite simple, nevertheless require knowing the
force of the oscillator of the transition in question. Furthermore, good esti-
mates can be made with the use of only the values of the energy levels of the
atom.

We mentioned above that the interaction of free and atomic electrons plays
a principal role in the problem of atomic excitation. But the cross section for
the transmission of energy € from one electron to another, if we disregard the
effect of the nucleus, can be obtained very simply and, in the case where the
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atomic electron is considered to be at rest, has the form:

o de
do = e— o . 8
s (8)

If now we assume, by definition, that the excitation of the n~th level of the
atom occurs when ¢ satisfies the inequality E, < ¢ < E 4, (where E, is the exci-
tation energy of the n-th level), then, for the excitation cross section, we
obtain :

’IT E;l = E.l En =Es=s En+1
Og =N * — 1 . (9)
E Ey7 - Epa E 2 Epna

and, for the ionization cross section
-1 -1
oy =N ¢ = (E* = E™) (10)

where N is the number of electrons in the valence shell of the atom. This lat-
ter is known as the Thomson formula.

In this form, these formulas yield the proper estimate for the absolute
values of the excitation cross section of the group of levels lying in the
given energy range. However, the maximum itself proves to be too sharp and ap-
proaches the threshold too closely; at high energies, the cross section is
noticeably underestimated. Recently, various attempts were made to improve /8
these results (Ref.9, 10, 11) but it seems that the most correct approach lies
not in complicating the calculations but in constructing semiempirical formulas
of the type of eq.(7) by using egs.(9) or (10) as the scale factor.

Thus, Drawin (Ref.l2) found that the formula
0 =0.66 01 + 6 In(lzs - G 2-) (11)
J

satisfactorily describes the ionization functions. It was shown elsewhere
(Ref.13) that the same formula, on substituting o; from eq.(10) by o, from
eq.(9), just as satisfactorily describes the excitation. Figure 4 illustrates
the obtained results.

Tt should be noted that eq.(8), forming the basis of these calculations
cannot - because of the very meaning of its derivation - lead to such misunder-
standings as the nonconservation of the number of particles in scattering;
therefore, calculations performed by its aid may even be preferable over Born's
method, especially for transitions between excited states.

In conclusion, we repeat that we investigated only certain methods of calcu-
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lation that yield an estimate of the absolute values of the cross sections and
truly impart a general form to the excitation functions. We disregarded not
only problems of a further quantitative refinement of the theory but also
certain qualitative problems such as the existence of resonance maxima and
minima on excitation functions. As is known, such characteristics are found ex-
perimentally in elastic scattering and should exist in inelastic scattering
also.
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Fig.l

a - Transition 1ls-3 Hp in He
b - Transition 1s-2p in H
¢ — Transition 3s8-3p in Na

Solid curve - experiment; dashed curve - Born approximation.
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Fig.2

a - Transition 1s-2 33 in He
b - Transition 1s-2 °P in He
¢ ~ Tonization of H

Solid curve - experiment; dashed curve - calculation by
eq.(2); dot-dash curve — calculation in Born approximation.
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Fig.3

Transition 1s-2s in H
Transition 1s-2p in H
Transition 58-5p in Rb
Transition 5s-6p in Rb

a
b -
c
d

Solid curve - experiment; dashed curve - Born approximation;
dots - calculation by eq.(5).
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Transition 1s-3 P in He
Transition 1s=2p in H
Transition 3s-3p in Na
Jonization of K-shell of Ni
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Solid curve ~ experiment; dashed curve - calculation
by eas.(9), (11).
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